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1. Introduction

Analytic classical solutions have been found in open superstring field theory [1 – 3] on BPS

D-branes formulated in terms of the Wess-Zemuno-Witten (WZW) like action [4, 5].1 The

solutions in ref. [1] are constructed from supercurrents, ghost fields and the identity string

field. The characteristic features of the solution are its correspondence to the marginal

deformation generated by the supercurrent and a well-defined Fock space expression of the

solution.

In open bosonic string field theory, similar classical solutions have been constructed by

using currents [1, 8 – 12]. They also correspond to marginal deformations and have a well-

defined Fock space expression. Unfortunately, the vacuum energy of the bosonic solution

is provided as a kind of indefinite quantities. In the absence of appropriate regularization,

we have nothing else to do but evaluate it by indirect calculation. However, the remarkable

feature of the supersymmetric solutions is that their vacuum energy vanishes exactly by a

direct calculation [1] as expected from their correspondence to marginal deformations [13].

The supersymmetric case may provide a clue for solving the vacuum energy problem in the

bosonic case.

Even on non-BPS D-branes, we can formulate string field theory in terms of the WZW

like action [5, 14]. Since non-BPS D-branes have tachyonic modes in the GSO(−) sector,

the theory enables us to investigate D-brane decay processes. A tachyonic lump solution,

for instance, describes a deformation from a non-BPS D-brane to a D-brane-anti-D-brane

pair. Actually, several analyses were performed by using the level truncation scheme [14 –

17]. If one of the directions is compactified on the circle with the critical radius, the above

1A string field theory around the solutions in ref. [2] was analyzed in refs. [6, 7]
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process is realized by a marginal deformation [18]. Accordingly, we have only to extend

the solution on the BPS D-brane to the non-BPS case in order to construct the solution

corresponding to the tachyonic lump. In this paper, we will construct an analytical solution

of this tachyonic lump.

In open superstring field theory on a single non-BPS D-brane, the action of the NS

sector string field is given by [5, 14]

S[Φ̂; Q̂B] =
1

4g2

〈〈

(e−Φ̂Q̂BeΦ̂)(e−Φ̂η̂0e
Φ̂)−

∫ 1

0
dt (e−tΦ̂∂te

tΦ̂)
{

(e−tΦ̂Q̂BetΦ̂), (e−tΦ̂η̂0e
tΦ̂)

} 〉〉

,

(1.1)

where Φ̂ denotes a string field of NS sector which corresponds to a vertex operator of

ghost number 0 and picture number 0 in the conformal field theory (CFT). In order to

incorporate GSO(−) sector into the theory on a BPS D-brane, we have to introduce internal

Chan-Paton factors:

Φ̂ = Φ+ ⊗ 1 + Φ− ⊗ σ1, (1.2)

where the subscript + (−) implies that the corresponding vertex operator is in the GSO(+)

(GSO(−)) sector. The operators Q̂B and η̂0 are defined as

Q̂B = QB ⊗ σ3, η̂0 = η0 ⊗ σ3, (1.3)

where QB and η0 are the ordinary operators without cocycle factors. The bracket 〈〈· · ·〉〉
is defined by a CFT correlator in the large Hilbert space and a trace over internal Chan-

Paton matrices. The action is invariant under the infinitesimal gauge transformation,

δeΦ̂ = (Q̂BδΛ̂)∗eΦ̂ +eΦ̂ ∗(η̂0δΛ̂
′), where δΛ̂ and δΛ̂′ are infinitesimal parameters. Variating

the action (1.1), we can derive the equation of motion to be

η̂0(e
−Φ̂ ∗ Q̂BeΦ̂) = 0. (1.4)

This is the equation to be solved in this paper. For details of the definition, see for instance

ref. [14].

This paper is organized as follows. In section 2, we will construct a tachyonic lump

solution. In the bosonic case at the critical radius, there is an su(2) current algebra which

is useful to discuss descent relations of bosonic D-branes and to construct analytical lump

solutions. At first, we find that a similar su(2) supercurrent algebra exists even in the

theory on a non-BPS D-brane. Using this supercurrent, we can solve the equation of

motion and find an analytic lump solution. The vacuum energy of the resulting solution

vanishes exactly as well as the BPS case. In section 3, we will discuss the theory expanded

around the tachyonic lump solution. To interpret physical meanings of the expanded

theory, fermionization of the compactified direction plays a key role, that is used to discuss

a tachyonic lump in the context of boundary conformal field theory [19, 18]. Finally, we

find that at the critical value of the solution the expanded theory is equivalent to the

theory on a D-brane-anti-D-brane pair. Although this result is expected from boundary

conformal field theory, we will provide a complete proof including interaction terms based

on the analytic classical solution to eq. (1.4) in open superstring field theory. In section 4

we conclude with a brief summary and open problems.
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2. Tachyonic lump solutions

2.1 su(2) supercurrent algebra

We compactify one of tangential directions to the brane on a circle of radius R =
√

2α′. We

take it as the 9-th direction and write the string coordinate as X9(z, z̄) = (X9(z)+X9(z̄))/2

and its supersymmetric partner as ψ9(z). The operator product expansions (OPEs) of these

fields are given by X9(y)X9(z) ∼ −2α′ log(y − z) and ψ9(y)ψ9(z) ∼ 1/(y − z).

Similarly to the bosonic case, we can find a level one su(2) supercurrent algebra at the

critical radius, although the critical radius in the superstring case is inequivalent to that

of bosonic case. The three supercurrents are given by

J1(z, θ) =
√

2 sin

(

X9

√
2α′

)

(z)c1 + θ
√

2ψ9 cos

(

X9

√
2α′

)

(z)c2 , (2.1)

J2(z, θ) =
√

2 cos

(

X9

√
2α′

)

(z)c1 + θ(−
√

2)ψ9 sin

(

X9

√
2α′

)

(z)c2 , (2.2)

J3(z, θ) = ψ9(z)c3 + θ
i√
2α′

∂X9(z) . (2.3)

Here, we have introduced the cocycle factors ci defined as

c2
3 = 1, cicj = δij + iεijkck i, j, k = 1, 2, 3, ε123 = +1 , (2.4)

where εijk is the totally antisymmetric tensor. Writing Ja(z, θ) ≡ ψa(z) + θJa(z) (a =

1, 2, 3), we obtain the following current algebra,

ψa(y)ψb(z) ∼ (y − z)−1δab , (2.5)

Ja(y)ψb(z) ∼ (y − z)−1(−iεabcψ
c(z)) , (2.6)

Ja(y)Jb(z) ∼ (y − z)−2δab + (y − z)−1(−iεabcJ
c(z)) . (2.7)

This is the same as su(2) supercurrent algebra obtained by substituting Ωab = 2δab and

fab
c = −iεabc in eqs. (3.1)–(3.3) in ref. [1].

From these supercurrents, we can construct the energy-momentum tensor by using the

Sugawara method. First, we can find the following equations,

− : ψ1∂ψ1 : (z) = − 1

4α′
(∂X9)2(z) − cos

(

2X9

√
2α′

)

(z) , (2.8)

− : ψ2∂ψ2 : (z) = − 1

4α′
(∂X9)2(z) + cos

(

2X9

√
2α′

)

(z) , (2.9)

: J1J1 : (z) = −ψ9∂ψ9(z) + cos

(

2X9

√
2α′

)

(z) − 1

4α′
(∂X9)2(z) , (2.10)

: J2J2 : (z) = −ψ9∂ψ9(z) − cos

(

2X9

√
2α′

)

(z) − 1

4α′
(∂X9)2(z) , (2.11)

: ψaψb : (z) = −iεabcJ
c(z) (a 6= b) , (2.12)

: ψaJb : (z)− : Jaψb : (z) = iεabc∂ψc(z) , (a 6= b) , (2.13)

: J1ψ1 : (z) = : J2ψ2 : (z) = : J3ψ3 : (z) =
i√
2α′

ψ9∂X9(z)c3 . (2.14)

– 3 –
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Then, we obtain the energy-momentum tensor and the world-sheet supercurrent as2

T 9(z) =
1

2
: (JaJa + ∂ψaψa) : (z) − i

6
εabc : (Ja : ψbψc : +ψa : (ψbJc − Jbψc) :) : (z)

= − 1

4α′
(∂X9)2(z) − 1

2
ψ9∂ψ9(z) , (2.15)

G9(z) = : Jaψa : (z) − i

3
εabc : ψa : ψbψc :: (z) =

i√
2α′

ψ9∂X9(z)c3 . (2.16)

Here, we should note that the world-sheet supercurrent G9(z) contains the cocycle factor

c3. Due to the presence of cocycle factors, the operators, T 9(z), G9(z), ψa(z) and Ja(z),

satisfy a superconformal current algebra with c = 3/2.

To incorporate the GSO(−) states into a string field, we have to introduce internal

Chan-Paton indices as in ref. [5, 14]. In the theory on a non-BPS D-brane, fermionic

operators like the BRST charge are tensored with a Pauli matrix as seen in eq. (1.3). Since

the world-sheet supercurrent G9(z) is a fermionic operator and it is tensored with c3, we

identify the cocycle factors ci with Pauli matrices representing the internal Chan-Paton

factors:

c3 = σ3, c1 = σ2, c2 = −σ1. (2.17)

We note that the SU(2) symmetry is not realized on a non-BPS D-brane in spite of

the fact that the su(2) supercurrent algebra exists in the theory. In fact, Ja
0 =

∮

dz
2πiJ

a(z)

is not to be a derivation with respect to the star product although [Q̂B, Ja
0 ] = [η̂0, Ja

0 ] = 0.

Because we find that Ja
0 (Ψ̂1 ∗ Ψ̂2) = (Ja

0 Ψ̂1) ∗ Ψ̂2 + ((−1)F̂+n̂Ψ̂1) ∗ (Ja
0 Ψ̂2) for a = 1, 2 due

to cocycle factors and quantized momentum along the 9-th direction, where F̂ and n̂ are

operators counting fermion number and the 9-th momentum as defined later by (3.10) and

(3.13). But, at the same time, J3
0 (Ψ̂1 ∗ Ψ̂2) = (J3

0 Ψ̂1) ∗ Ψ̂2 + Ψ̂1 ∗ (J3
0 Ψ̂2). Thus, the SU(2)

symmetry is broken to U(1) by the interaction terms in the action (1.1).

2.2 Classical solutions via supercurrents

In ref. [1], we have constructed analytic classical solutions in the theory on BPS D-branes

by means of supercurrent algebra. Now that we possess the supercurrent algebra including

GSO(−) sector, we can apply the same method to the theory on the non-BPS D-branes.

Taken J1(z, θ) as the supercurrent, the classical solution is given by

Φ̂0 = −ṼL(F )I , (2.18)

ṼL(F ) =

∫

Cleft

dz

2πi
F (z)ṽ(z), (2.19)

ṽ(z) =
1√
2

cξe−φ(z) ⊗ σ3 × ψ1(z), (2.20)

where I is the identity string field and Cleft denotes a counter-clockwise path along a half

of the unit circle, i.e., −π/2 < σ < π/2 for z = eiσ. F (z) is a function on the unit circle

2We have used the definition in ref. [1].

– 4 –



J
H
E
P
0
1
(
2
0
0
6
)
0
1
3

|z| = 1 satisfying F (−1/z) = z2F (z) [1].3 We must impose an additional constraint on

F (z) due to the reality condition of the string field as in ref. [1]. The cocycle factor σ3

should be attached in ṽ(z) since the ghost factor cξe−φ(z) is Grassmann odd.4 Substituting

ψ1(z) of eq. (2.1) into eq. (2.20), the operator ṽ(z) is rewritten as5

ṽ(z) = −i cξe−φ sin

(

X9(z)√
2α′

)

⊗ σ1. (2.21)

It turns out that this classical solution represents a non-trivial configuration of the GSO(−)

string field. Since the GSO(−) states include a tachyonic mode, this solution can be

regarded as a kind of tachyonic lump solutions.

Now, we can easily find that the equation of motion actually holds. First, we define

the operator VL(g) as

VL(g) =

∫

Cleft

dz

2πi
g(z)v(z), (2.22)

v(z) = [Q̂B, ṽ(z)] =
1√
2
(c(z) ⊗ σ3)J

1(z) +
1√
2
ηeφψ1(z). (2.23)

For the operators VL and ṼL, we find the commutation relations

[Q̂B, ṼL(g)] = VL(g), (2.24)

[ṼL(g1), VL(g2)] = −1

2
CL(g1g2) ⊗ σ3, (2.25)

where CL(g) ≡
∫

Cleft

dz
2πig(z)c(z). Then, taking into account of the properties of these

operators associated with the star product [1], we can obtain

e−Φ̂0 ∗ Q̂BeΦ̂0 = (eṼL(F )Q̂Be−ṼL(F ))I = −VL(F )I +
1

4
CL(F 2)I ⊗ σ3. (2.26)

The ξ zero mode is not contained in both operators VL(F ) and CL(F 2) and the identity

string field satisfies η0I = 0. As a result, we find that η̂0(e
−Φ̂0 ∗ Q̂BeΦ̂0) = 0 and the

equation of motion holds.

Concerning the vacuum energy, we can obtain it by calculating the correlation func-

tion
〈〈

(η̂0Φ̂0)(e
−tΦ̂0Q̂BetΦ̂0)

〉〉

. Similarly, it can be seen that there is no ξ zero mode in

e−tΦ̂0Q̂BetΦ̂0 for arbitrary t. This fact is sufficient to show that the vacuum energy of

the classical solution vanishes exactly in the same way as that of the GSO(+) solution in

ref. [1].

3Under this condition, F (z) cannot be a non-zero constant.
4We note that eqφ (q : odd) is a fermionic operator. More precisely, we need a cocycle factor to represent

statistical property of the operator.
5We have adjusted c1 = σ2, c2 = −σ1 in eq. (2.17) so that ṽ(z) has the cocycle factor σ1. If we choose

ψ2 instead of ψ1 in eq. (2.20), we get cosine-type solution. These sine and cosine type solutions are related

by U(1)-symmetry, which is generated by J3
0 .

– 5 –
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3. Superstring field theory around the solution

We consider the action expanded around the classical solution in order to provide physical

interpretation of the solution. If we expand the string field as eΦ̂ = eΦ̂0eΦ̂′
, the action (1.1)

becomes

S[Φ̂; Q̂B] = S[Φ̂0; Q̂B] + S[Φ̂′; Q̂′
B]. (3.1)

The first term of the right-hand side corresponds to the vacuum energy of the solution,

which is seen to be zero as discussed above. Then, the expanded action takes the same

form as the original action except that the BRST charge is changed depending on the

classical solution. Accordingly, we will investigate the new BRST charge Q̂′
B to determine

the spectrum around the solution.

3.1 Fermionization and rebosonization

To find the spectrum around the classical solution, it is convenient to fermionize the scalar

field X9(z) as in refs. [19, 18]:

e
± i√

2α′ X
9(z)

=
1√
2
(ξ9(z) ± iη9(z)) ⊗ τ1, (3.2)

where ξ9(z) and η9(z) are fermionic fields and the Pauli matrices τi denote cocycle factors.

To ensure correct (anti-)commutation relations between various fields, we also attach a

cocycle factor τ3 to all other fermionic fields. For example, ψ9(z) is replaced with ψ9(z)⊗τ3,

and the derivation operator η̂0 is written as η̂0 = η0 ⊗ σ3 ⊗ τ3. Using the fermionization

rule (3.2), the supercurrents (2.1), (2.2) and (2.3) can be expressed as

J1(z, θ) = η9(z) ⊗ σ2 ⊗ τ1 + θ (−iψ9ξ9(z)) ⊗ σ1 ⊗ τ2 , (3.3)

J2(z, θ) = ξ9(z) ⊗ σ2 ⊗ τ1 + θ (iψ9η9(z)) ⊗ σ1 ⊗ τ2 , (3.4)

J3(z, θ) = ψ9(z) ⊗ σ3 ⊗ τ3 + θ (−iξ9η9(z)) ⊗ 1⊗ 1 . (3.5)

Similarly, the energy-momentum tensor (2.15) and the world-sheet supercurrent (2.16) are

rewritten as

T 9(z) =

(

−1

2
ξ9∂ξ9(z) − 1

2
η9∂η9(z) − 1

2
ψ9∂ψ9(z)

)

⊗ 1⊗ 1 , (3.6)

G9(z) = −iξ9η9ψ9(z) ⊗ σ3 ⊗ τ3 . (3.7)

Then, the BRST charge is expressed as Q̂B = QB ⊗ σ3 ⊗ τ3.

Since we compactify the 9-th direction to the circle, the momentum along this direction

is quantized and it is labeled by even and odd integers. Applying the fermionization rule

to the string field, the GSO(+) states with the odd momentum carry the cocycle factor τ1.

Since the GSO(−) states correspond to fermionic vertex operators, the cocycle factor τ3

(τ2) is attached to the GSO(−) states with even (odd) momentum. Then, we can express

the string field as

Φ̂ = Φe
+ ⊗ 1⊗ 1 + Φo

+ ⊗ 1 ⊗ τ1 + Φe
− ⊗ σ1 ⊗ τ3 + Φo

− ⊗ σ1 ⊗ τ2, (3.8)

– 6 –
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where the subscript ± denotes GSO parity and the superscript e (o) implies the state with

even (odd) momentum. For details, the world-sheet fermion number is defined as

(−1)F̂ |Φ±〉 = ±|Φ±〉 , (3.9)

where the operator F̂ in our convention is6

F̂ =

∮

dz

2πi

(

5
∑

k=1

: ψk
+ψk

− : (z) − ∂φ(z)

)

, (3.10)

ψ1
± ≡ i√

2
(ψ0 ± ψ1), ψk

± ≡ 1√
2
(ψ2k−2 ± iψ2k−1), k = 2, 3, 4, 5. (3.11)

The momentum parity is defined as

(−1)n̂|Φe〉 = +|Φe〉 , (−1)n̂|Φo〉 = −|Φo〉 , (3.12)

where the operator n̂ counting the 9-th momentum is given by

n̂ =

∮

dz

2πi

i√
2α′

∂X9(z) =

∮

dz

2πi
iη9ξ9(z) . (3.13)

In general, the string field of an even ghost number is expanded by the same cocycle

factors. The string field of an odd ghost number, like gauge transformation parameters,

can be written as

Λ̂ = Φe
+ ⊗ σ3 ⊗ τ3 + Φo

+ ⊗ σ3 ⊗ τ2 + Φe
− ⊗ σ2 ⊗ 1 + Φo

− ⊗ σ2 ⊗ τ1. (3.14)

We can find another representation of the conformal field theory for (ψ9, ξ9, η9) by the

rebosonization [19, 18]

(ξ9(z) ± iψ9(z)) =
√

2e
± i√

2α′ φ
9(z) ⊗ τ̃1, (3.15)

where the Pauli matrices τ̃i are cocycle factors and we assign the cocycle τ̃3 to fermionic

fields except ψ9(z) and ξ9(z). We can easily rewrite all operators and the string field using

the bosonization rule (3.15). In particular, the supercurrents (3.3), (3.4) and (3.5) are

expressed as

J1(z, θ)=η9 ⊗ σ2 ⊗ τ1 ⊗ τ̃3 − θ
i√
2α′

∂φ9(z) ⊗ σ1 ⊗ τ2 ⊗ 1, (3.16)

J2(z, θ)=
√

2 cos

(

φ9

√
2α′

)

(z) ⊗ σ2 ⊗ τ1 ⊗ τ̃1 + θ
√

2η9 sin

(

φ9

√
2α′

)

(z) ⊗ σ1 ⊗ τ2 ⊗ τ̃2, (3.17)

J3(z, θ)=
√

2 sin

(

φ9

√
2α′

)

(z) ⊗ σ3 ⊗ τ3 ⊗ τ̃1 − θ
√

2η9 cos

(

φ9

√
2α′

)

(z) ⊗ 1 ⊗ 1⊗ τ̃2. (3.18)

We note that we have to change the normalization of the action if we apply the fermion-

ization or the rebosonization to the string field. In the action (1.1), we take the trace of

6Here φ is a bosonized ghost coming from γ = ηeφ, β = e−φ∂ξ, and ψµ (µ = 0, 1, · · · , 9) are matter

fermions. The reader should not confuse them with φ9 in eq. (3.15) and the lowest components ψa of the

su(2) supercurrent J
a(z, θ) (a = 1, 2, 3).

– 7 –
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all Chan-Paton indices. If we fermionize X9, the Chan-Paton factors τi with their trace

produce an extra factor of two for the action. Consequently, we must divide the action

by two in order to provide the same action for the component fields. Furthermore, if we

rebosonize and introduce the additional Chan-Paton factors τ̃i, we need to divide the action

by four.

3.2 The theory expanded around the solution

The new BRST operator in the expanded action S[Φ̂′; Q̂′
B] in (3.1) around a solution Φ̂0

to the equation of motion (1.4) is generically expressed as

Q̂′
BΨ̂ = Q̂BΨ̂ + Â0 ∗ Ψ̂ − (−)gh(Ψ̂)Ψ̂ ∗ Â0, Â0 = e−Φ̂0 ∗ Q̂BeΦ̂0 for ∀Ψ̂. (3.19)

This formula can be derived as appendix B in ref. [1], for example, because algebraic

relations are almost the same as the original GSO projected theory [14]. Here gh(Ψ̂) denotes

ghost number of Ψ̂ and it is counted by ngh = −
∮

dz
2πi(:bc : + :ξη :). A string field Ψ̂ takes

the form of (3.8) for even ghost number and (3.14) for odd ghost number. The sign factor

(−)gh(Ψ̂) instead of “Grassmannality” appears because Q̂′
B should be an anti-derivation as

original Q̂B in the sense that Q̂′
B(Ψ̂1 ∗ Ψ̂2) = (Q̂′

BΨ̂1) ∗ Ψ̂2 + (−)gh(Ψ̂1)Ψ̂1 ∗ (Q̂′
BΨ̂2) [20].

We rewrite the operator ṽ(z) in the solution (2.18) by using the fermionic fields

(ψ9, ξ9, η9) through the fermionization rule (3.2):

ṽ(z) =
1√
2
cξe−φ η9(z) ⊗ σ1 ⊗ τ2. (3.20)

The operator (2.23) can be written as

v(z) =

( −i√
2
cψ9ξ9(z) +

1√
2
ηeφη9(z)

)

⊗ σ2 ⊗ τ1. (3.21)

The operator Q̂′
B (3.19) for the solution (3.20) can be found as

Q̂′
B = (QB +

1

4
C(F 2)) ⊗ σ3 ⊗ τ3 − VL(F ) − (−1)F̂+n̂VR(F ), (3.22)

where C(F 2) = CL(F 2) + CR(F 2), CR(g) ≡
∫

Cright

dz
2πig(z)c(z), VR(g) ≡

∫

Cright

dz
2πig(z)v(z),

Cright is a counter-clockwise path along a half of the unit circle:(|z| = 1, Re z < 0) as in

ref. [1], and the operators F̂ and n̂ are given by eqs. (3.10) and (3.13). The extra sign

factor (−1)F̂+n̂ in front of VR(F ) comes from exchange of order of Ψ̂ and v(z) in eq. (3.19).

This new BRST operator can be rewritten in terms of a similarity transformation from the

original operator,

Q̂′
B = eṼL(F )+(−1)F̂ +n̂ṼR(F ) Q̂B e−ṼL(F )−(−1)F̂ +n̂ṼR(F ). (3.23)

We notice that this relation cannot be used for a field redefinition in the expanded action

because of [η̂0, ṼL(F ) + (−1)F̂+n̂ṼR(F )] 6= 0.

Furthermore, we can find another expression of the new BRST charge in terms of

(φ9, η9). If the new BRST charge acts on the state of (−1)F̂+n̂ = +1, it becomes

Q̂′
B = e

− i

2
√

α′ (φ
9
L(F )+φ9

R(F ))⊗σ1⊗τ2 Q̂B e
i

2
√

α′ (φ
9
L(F )+φ9

R(F ))⊗σ1⊗τ2, (3.24)

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
0
1
3

and for the case of (−1)F̂+n̂ = −1,

Q̂′
B = e

− i

2
√

α′ (φ
9
L(F )−φ9

R(F ))⊗σ1⊗τ2 Q̂B e
i

2
√

α′ (φ
9
L(F )−φ9

R(F ))⊗σ1⊗τ2, (3.25)

where φ9
L/R(F ) ≡

∫

Cleft/right

dz
2πiF (z)φ9(z). They are derived from the direct calculation or

from the expression (3.23) and the following anti-commutation relation,

{Q̂B, ΩL/R(F )} = 2
√

α′Ṽ 1
L/R(F ) + iφ9

L/R(F ) ⊗ σ1 ⊗ τ2 , (3.26)

ΩL/R(F ) ≡ −
∫

Cleft/right

dz

2πi
F (z) i cξ∂ξe−2φ φ9(z) ⊗ σ2 ⊗ τ1. (3.27)

Noting [η̂0, φ
9
L/R(F ) ⊗ σ1 ⊗ τ2] = 0, these expressions given in eqs. (3.24) and (3.25)

for the new BRST operator imply that the expanded action around the solution can be

transformed back to the original action by the string field redefinition,

Φ̂′′ = e
i

2
√

α′ φ
9
L(F )I⊗σ1⊗τ2 ∗ Φ̂′ ∗ e

− i

2
√

α′ φ
9
L(F )I⊗σ1⊗τ2 . (3.28)

Actually, this string field redefinition does not change the interaction terms in the action

and, depending on the (−1)F̂+n̂ parity of the string field, the redefinition can be rewritten

as

Φ̂′′ =

{

e
i

2
√

α′ (φ
9
L(F )+φ9

R(F ))⊗σ1⊗τ2Φ̂′ for (−1)F̂+n̂ = +1

e
i

2
√

α′ (φ
9
L(F )−φ9

R(F ))⊗σ1⊗τ2Φ̂′ for (−1)F̂+n̂ = −1.
(3.29)

The difference in sign in the right-hand side arises from (anti-)commutation relations of

Chan-Paton factors. For the string field (3.8), the (−1)F̂+n̂ = +1 sector involves cocycle

factors 1 ⊗ 1 and σ1 ⊗ τ2, which commute with the generator σ1 ⊗ τ2 of the string field

redefinition. However, the generator anti-commutes with the cocycle factors 1 ⊗ τ1 and

σ1 ⊗ τ3 and then the minus sign appears for the (−1)F̂+n̂ = −1 sector, Φo
+ and Φe

− in

eq. (3.8).

Though the expanded action is transformed to the original one, the string field redefi-

nition has a physical effect. As discussed for the case of the Wilson line solution in ref. [1],

the spectrum is changed from that of the original theory due to the zero-mode of the op-

erator φ9(z). We have no zero-mode in the operator φ9(F ) ≡ φ9
L(F ) + φ9

R(F ) because we

impose the condition F (−1/z) = z2F (z) in the solution (2.18) and then the coefficients of

the zero-mode cancel as
∫

Cleft

dz

2πi
F (z) +

∫

Cright

dz

2πi
F (z) = 0 , (3.30)

whereas φ9
∆(F ) ≡ φ9

L(F ) − φ9
R(F ) includes the zero-mode. As a result, the (−1)F̂+n̂ = −1

sector is multiplied by the extra factor,

exp

(

i
f√
α′

φ̂9
0 ⊗ σ1 ⊗ τ2

)

, f ≡
∫

Cleft

dz

2πi
F (z), (3.31)
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where φ̂9
0 denotes the zero-mode operator of φ9(z). This zero-mode factor changes the

momentum of the string field along the φ9 direction as pφ9 → pφ9±f/
√

α′. The momentum

shift only for the (−1)F̂+n̂ = −1 sector is exactly the same effect as that of a tachyonic lump

solution as discussed in the context of boundary conformal field theory [18]. Hence, our

analytic solution (2.18) represents the same tachyonic lump solution in open superstring

field theory, and the half integration mode, f , corresponds to the Wilson line along the φ9

direction.

3.3 The expanded theory at the critical value of f

We discuss a tachyonic lump solution corresponding to the critical value of f in (3.31),

namely

f =
2m + 1√

2
, m ∈ Z. (3.32)

At the critical value, the redefined field Φ̂′′ (3.29) can be rewritten again by the fermionic

fields (ψ9, ξ9, η9) instead of (φ9, η9). Moreover, we can write its string field by the original

string coordinates (X9, ψ9) through the rebosonization of (ξ9, η9) to X9.

Using the fermionic fields (ψ9, ξ9, η9), we can write the redefined field as

Φ̂′′ = e
i

2
√

α′ φ
9(F )⊗σ1⊗τ2(Φe

+ ⊗ 1 ⊗ 1 + Φo
− ⊗ σ1 ⊗ τ2)

+e
i

2
√

α′ φ
9
∆(F )⊗σ1⊗τ2(Φo

+ ⊗ 1 ⊗ τ1 + Φe
− ⊗ σ1 ⊗ τ3)

=

(

cos

(

φ9(F )

2
√

α′

)

Φe
+ + i sin

(

φ9(F )

2
√

α′

)

Φo
−

)

⊗ 1⊗ 1

+

(

i sin

(

φ9(F )

2
√

α′

)

Φe
+ + cos

(

φ9(F )

2
√

α′

)

Φo
−

)

⊗ σ1 ⊗ τ2

+

(

cos

(

φ9
∆(F )

2
√

α′

)

Φo
+ − sin

(

φ9
∆(F )

2
√

α′

)

Φe
−

)

⊗ 1 ⊗ τ1

+

(

sin

(

φ9
∆(F )

2
√

α′

)

Φo
+ + cos

(

φ9
∆(F )

2
√

α′

)

Φe
−

)

⊗ σ1 ⊗ τ3. (3.33)

Here, the operators, cos(φ9
(∆)(F )/2

√
α′) and sin(φ9

(∆)(F )/2
√

α′), are represented in terms

of the fermionic fields ξ9 and ψ9 instead of φ9 thanks to (3.15) and ∂φ9 = −
√

2α′ξ9ψ9.

At first, we consider the operators cos(φ9
∆(F )/2

√
α′) and sin(φ9

∆(F )/2
√

α′). When

we introduce the operator counting φ9 momenta as n̂φ9 =
∮

dz
2πi i∂φ9/

√
2α′, the operators

appeared in the redefinition have (−1)n̂φ9 = −1 because they carry the φ9 momentum

pφ9 = f/
√

α′ = (2m + 1)/
√

2α′. In addition, as in refs. [18, 19], we define the operator F̂φ9

counting the fermion number of η9 and other spectator fermions, ψµ (µ = 0, 1, · · · , 8) and

eqφ (q:odd). With this definition, the operators have (−1)F̂φ9 = +1. Then, we find that

the operators have (−1)F̂φ9+n̂φ9 = −1.

Next, we consider the original fermion number and momenta of the operators. If we

change the sign of φ9, the fermions ξ9, ψ9 are transformed as

ξ9 → ξ9, ψ9 → −ψ9, (3.34)
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because φ9 is related to ξ9 and ψ9 through the rebosonization rule (3.15). Therefore we

can determine the (−1)F̂ parity of some operators by means of the parity transformation

of φ9. We can find that cos(φ9
∆(F )/2

√
α′) has (−1)F̂ = +1 and sin(φ9

∆(F )/2
√

α′) has

(−1)F̂ = −1. As discussed in ref. [18], we have the relation:

(−1)F̂ (−1)n̂ = (−1)F̂φ9 (−1)n̂φ9 . (3.35)

Combining these results, we can determine the values of (−1)F̂ and (−1)n̂ individually for

these operators. The resulting parities for operators are listed in the following table:

(−1)F̂ (−1)n̂ (−1)F̂φ9 (−1)n̂φ9

cos

(

φ9
∆(F )

2
√

α′

)

+ − + −

sin

(

φ9
∆(F )

2
√

α′

)

− + + −

(3.36)

Based on a similar consideration, we have the following results for other operators:

(−1)F̂ (−1)n̂ (−1)F̂φ9 (−1)n̂φ9

cos

(

φ9(F )

2
√

α′

)

+ + + +

sin

(

φ9(F )

2
√

α′

)

− − + +

(3.37)

From these results, we find that the first and second terms in eq. (3.33) have (−1)F̂ =

+1 and (−1)n̂ = +1 and the third and fourth have (−1)F̂ = −1 and (−1)n̂ = −1, and

then all components in the redefined string field (3.33) have (−1)F̂+n̂ = +1. Before the

redefinition, the fields with 1 ⊗ τ1 and σ1 ⊗ τ3 have (−1)F̂+n̂ = −1. The parity of these

states is changed after the redefinition. Alternatively, the quantum number of F̂ + n̂ can

be regarded as the fermion number assigning +1 to the fields ψ9, ξ9, η9 in the fermionic

representation. Consequently, with the fermionic representation, the statistical property

of the fields with 1 ⊗ τ1 and σ1 ⊗ τ3 are changed under the string field redefinition. In

order to ensure correct (anti-)commutation relations, we have to assign a cocycle factor of

τ̃1 to these fields, and assign a cocycle factor τ̃3 to the derivations Q̂B and η̂0. After all,

the redefined string field can be expressed using the fermionic representation as

Φ̂′′ = Ψe
+ ⊗ 1⊗ 1⊗ 1 + Ψ′e

+ ⊗ 1⊗ τ1 ⊗ τ̃1 + Ψo
− ⊗ σ1 ⊗ τ3 ⊗ τ̃1 + Ψ′o

− ⊗ σ1 ⊗ τ2 ⊗ 1. (3.38)

Now, let us express the string field (3.38) in terms of the fields (X9, ψ9) through the

rule (3.2). When we rebosonize (ξ9, η9) to X9, we have to assign a cocycle factor τ1 to states

with an odd momentum and retain the cocycle factors τi under the earlier fermionization.

According to this procedure, the string fields Ψo
− and Ψ′o

− acquire an additional cocycle

factor of τ1 under the rebosonization. Hence, with the fields (X9, ψ9), the string field can

be rewritten as

Φ̂′′ = Ψe
+ ⊗ 1⊗ 1⊗ 1 + Ψ′e

+ ⊗ 1⊗ τ1 ⊗ τ̃1 + Ψo
− ⊗ σ1 ⊗ τ2 ⊗ τ̃1 + Ψ′o

− ⊗ σ1 ⊗ τ3 ⊗ 1. (3.39)
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The derivations are expressed as same as before:

Q̂B = QB ⊗ σ3 ⊗ τ3 ⊗ τ̃3, η̂0 = η0 ⊗ σ3 ⊗ τ3 ⊗ τ̃3. (3.40)

Here, we write the cocycle factors appeared in the string field (3.39) and the derivations

(3.40) as

Σ3 = 1⊗ τ1 ⊗ τ̃1, Σ1 = σ1 ⊗ τ2 ⊗ τ̃1, Σ2 = σ1 ⊗ τ3 ⊗ 1, σ = σ3 ⊗ τ3 ⊗ τ̃3. (3.41)

These matrices satisfy the following relations:

Σ2
1 = Σ2

2 = Σ2
3 = σ2 = 1 , (3.42)

[σ,Σ3] = {σ,Σ1} = {σ,Σ2} = 0 , (3.43)

ΣiΣj = iεijkΣk , (i 6= j) . (3.44)

We can represent the same algebra by the alternative Pauli matrices σi and τi:

Σ′
1 = σ1 ⊗ τ1, Σ′

2 = σ1 ⊗ τ2, Σ′
3 = 1⊗ τ3, σ′ = σ3 ⊗ 1. (3.45)

Therefore, we can identify (Σ′
i, σ

′) with (Σi, σ) if we divide the action by two to compensate

their different normalization.

Finally, under the above identification, we can represent the redefined string field in

terms of (X9, ψ9) as

Φ̂′′ = Ψe
+ ⊗ 1⊗ 1 + Ψ′e

+ ⊗ 1 ⊗ τ3 + Ψo
− ⊗ σ1 ⊗ τ1 + Ψ′o

− ⊗ σ1 ⊗ τ2, (3.46)

and the derivations as

Q̂B = QB ⊗ σ3 ⊗ 1, η̂0 = η0 ⊗ σ3 ⊗ 1. (3.47)

The resulting string field theory including this string field and the derivations is exactly

the same theory on a D-brane-anti-D-brane pair discussed in ref. [14], in which σi are the

internal Chan-Paton indices to include the GSO(−) sector and τi correspond to the con-

ventional Chan-Paton indices introduced for a pair of branes. The string fields connecting

a D-brane and an anti-D-brane have odd momenta along the X9 direction, and the string

fields attached both ends of the string to a single brane have even momenta. Consequently,

the string field theory at the critical value of f describes the D-brane-anti-D-brane system

in which a D-brane and an anti-D-brane are situated at antipodal points along the circle

with the critical radius in the T-dual picture.

Thus, we find that the tachyonic lump solution corresponding to the critical value of

f changes the theory on a single non-BPS D-brane to that of a D-brane-anti-D-brane pair.

This is physically the same result obtained before in terms of boundary conformal field

theory [18]. But, we should comment on a superficial difference between these results. In

our case, the resulting branes are put on the X9 direction, while in ref. [18] the branes are on

the direction represented by φ′9(z), which is another bosonic field given by a rebosonization

of (η9, ψ9). As discussed in the previous section, the theory possesses the su(2) supercurrent
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algebra but the SU(2) symmetry is broken on a non-BPS D-brane. However, it turns out

that the SU(2) symmetry is restored in the NS sector of the theory with the critical value

of f and the bosonic coordinates (X9, φ9, φ′9) can be rotated under this symmetry because

all sectors have (−1)F̂+n̂ = +1 after the string field redefinition around the solution.

Therefore, the difference is resolved by the SU(2) rotation of X9 to φ′9.

4. Concluding remarks

We constructed the analytic classical solution in superstring field theory on the non-BPS

D-brane in which the one direction X9 is compactified to a circle with the critical radius.

The solution corresponds to the tachyonic lump solution which corresponds to the Wilson

line along the φ9 direction. The vacuum energy of the solution vanishes exactly as that

of the BPS case. At the critical value of f , the theory expanded around the solution is

equivalent to the theory on a D-brane-anti-D-brane pair, including the interaction terms.

These results agree with the facts expected from boundary conformal field theory. The

su(2) supercurrent algebra was useful for the analyses of the solution.

In ref. [1], we found some features of the solution on BPS D-branes. The solution has a

well-defined Fock space expression and the half integration mode f is invariant under a class

of gauge transformations in superstring field theory but other modes are not. Employing

the same technique in ref. [1], we can easily find that the same is true in the case of non-BPS

D-branes.

We should discuss the Ramond sector, which was out of the scope of this paper, to

complete the correspondence of our solution to the tachyonic lump. The action on non-

BPS D-branes including the Ramond sector is supposed to be constructed by extending the

action on BPS D-branes given by ref. [21]. In the extended theory including the Ramond

sector, our solution will satisfy the equation of motion. The problem is whether the string

field redefinition, especially at the critical value of f , reproduces the expected result of the

Wilson line along the φ9 direction. It seems complicated to incorporate GSO(−) states in

the Ramond sector and assign appropriate cocycle factors consistently.

We can apply our method constructing the analytical solution to other cases of marginal

deformations; a solution on non-BPS D-branes on an orbifold [18] and a vortex solution on

a D-brane-anti-D-brane pair [19]. To realize marginal deformations, we have to take the

critical radius of the compactified direction and the vacuum energy is always to be zero

for these cases. If we deform the radius away from the critical value, we may be able to

find more general solutions with a non-trivial vacuum energy. This problem is interesting

because such a general solution may teach us how the closed string moduli changing the

radius includes in open string field.

In this paper we show that there exists an analytic solution taking the value in the

GSO(−) sector. This fact indicates the possible existence of the analytic tachyon vacuum

solution, at which non-BPS D-branes completely disappear, in open superstring field theory.

If we find the analytic solution, we could prove the non-existence of open strings and the

exact cancellation of the vacuum energy, as discussed in the bosonic case [22, 24, 23]. We
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expect that the evaluation of the vacuum energy in the supersymmetric case sheds lights

on the problem what sort of regularization should be applied to the bosonic theory.
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